Setup
Packages and options
library(NNbenchmark)
library(kableExtra)
options(scipen = 999)
Datasets to test
NNdataSummary(NNdatasets)
## Dataset n_rows n_inputs n_neurons n_parameters
## 1 mDette 500 3 5 26
## 2 mFriedman 500 5 5 36
## 3 mIshigami 500 3 10 51
## 4 mRef153 153 5 3 22
## 5 uDmod1 51 1 6 19
## 6 uDmod2 51 1 5 16
## 7 uDreyfus1 51 1 3 10
## 8 uDreyfus2 51 1 3 10
## 9 uGauss1 250 1 5 16
## 10 uGauss2 250 1 4 13
## 11 uGauss3 250 1 4 13
## 12 uNeuroOne 51 1 2 7
Launch package’s trainPredict
res <- trainPredict_1pkg(1:12, pkgname = "nnet", pkgfun = "nnet", nnet.method,
prepareZZ.arg = nnet.prepareZZ, nrep = nrep, doplot = TRUE,
csvfile = TRUE, rdafile = TRUE, odir = odir, echo = FALSE)
Results
#print(res)
kable(t(apply(res, c(1,4), min)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.2903
|
0.0843
|
0.2288
|
1.1819
|
0.07
|
mFriedman
|
0.0088
|
0.0001
|
0.0070
|
0.0254
|
0.08
|
mIshigami
|
0.6011
|
0.3613
|
0.4353
|
2.7437
|
0.14
|
mRef153
|
3.2253
|
10.4025
|
2.1880
|
12.8694
|
0.00
|
uDmod1
|
0.0435
|
0.0019
|
0.0332
|
0.1053
|
0.00
|
uDmod2
|
0.0424
|
0.0018
|
0.0334
|
0.0922
|
0.00
|
uDreyfus1
|
0.0022
|
0.0000
|
0.0017
|
0.0042
|
0.00
|
uDreyfus2
|
0.0906
|
0.0082
|
0.0722
|
0.2134
|
0.00
|
uGauss1
|
2.2473
|
5.0505
|
1.7364
|
7.3077
|
0.03
|
uGauss2
|
2.3727
|
5.6295
|
1.8605
|
7.6034
|
0.01
|
uGauss3
|
2.2958
|
5.2709
|
1.8285
|
6.3560
|
0.01
|
uNeuroOne
|
0.2830
|
0.0801
|
0.2313
|
0.5674
|
0.00
|
kable(t(apply(res, c(1,4), median)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.45765
|
0.20950
|
0.34465
|
1.88020
|
0.080
|
mFriedman
|
0.03580
|
0.00190
|
0.02805
|
0.09920
|
0.095
|
mIshigami
|
0.68760
|
0.47290
|
0.51225
|
3.03925
|
0.150
|
mRef153
|
3.41260
|
11.64860
|
2.45920
|
14.12370
|
0.020
|
uDmod1
|
0.04485
|
0.00200
|
0.03590
|
0.12455
|
0.015
|
uDmod2
|
0.05870
|
0.00345
|
0.04700
|
0.12505
|
0.000
|
uDreyfus1
|
0.00230
|
0.00000
|
0.00190
|
0.00730
|
0.000
|
uDreyfus2
|
0.09065
|
0.00820
|
0.07250
|
0.22030
|
0.000
|
uGauss1
|
2.28220
|
5.20880
|
1.78145
|
7.43960
|
0.030
|
uGauss2
|
4.61820
|
23.49455
|
3.56380
|
13.50225
|
0.025
|
uGauss3
|
3.30540
|
10.94545
|
2.55245
|
10.18235
|
0.025
|
uNeuroOne
|
0.28300
|
0.08010
|
0.23130
|
0.56750
|
0.000
|