Setup
Packages and options
library(NNbenchmark)
library(kableExtra)
options(scipen = 999)
Datasets to test
NNdataSummary(NNdatasets)
## Dataset n_rows n_inputs n_neurons n_parameters
## 1 mDette 500 3 5 26
## 2 mFriedman 500 5 5 36
## 3 mIshigami 500 3 10 51
## 4 mRef153 153 5 3 22
## 5 uDmod1 51 1 6 19
## 6 uDmod2 51 1 5 16
## 7 uDreyfus1 51 1 3 10
## 8 uDreyfus2 51 1 3 10
## 9 uGauss1 250 1 5 16
## 10 uGauss2 250 1 4 13
## 11 uGauss3 250 1 4 13
## 12 uNeuroOne 51 1 2 7
Launch package’s trainPredict
res <- trainPredict_1pkg(1:12, pkgname = "rminer", pkgfun = "fit", rminer.method,
prepareZZ.arg = rminer.prepareZZ, nrep = nrep, doplot = TRUE,
csvfile = TRUE, rdafile = TRUE, odir = odir, echo = FALSE)
Results
#print(res)
kable(t(apply(res, c(1,4), min)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.2344
|
0.0549
|
0.1877
|
0.7583
|
0.21
|
mFriedman
|
0.0095
|
0.0001
|
0.0074
|
0.0290
|
0.26
|
mIshigami
|
0.5619
|
0.3157
|
0.4061
|
2.4458
|
0.43
|
mRef153
|
3.1782
|
10.1006
|
2.1846
|
12.9657
|
0.03
|
uDmod1
|
0.0413
|
0.0017
|
0.0322
|
0.1104
|
0.01
|
uDmod2
|
0.0407
|
0.0017
|
0.0324
|
0.0920
|
0.01
|
uDreyfus1
|
0.0015
|
0.0000
|
0.0013
|
0.0030
|
0.00
|
uDreyfus2
|
0.0906
|
0.0082
|
0.0721
|
0.2140
|
0.00
|
uGauss1
|
2.2370
|
5.0043
|
1.7337
|
6.9997
|
0.08
|
uGauss2
|
2.3543
|
5.5428
|
1.8499
|
7.4454
|
0.05
|
uGauss3
|
2.2827
|
5.2109
|
1.8118
|
6.3302
|
0.06
|
uNeuroOne
|
0.2830
|
0.0801
|
0.2313
|
0.5675
|
0.00
|
kable(t(apply(res, c(1,4), median)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.30460
|
0.09285
|
0.23550
|
1.34855
|
0.250
|
mFriedman
|
0.01060
|
0.00010
|
0.00835
|
0.03765
|
0.285
|
mIshigami
|
0.65935
|
0.43470
|
0.50710
|
2.86255
|
0.440
|
mRef153
|
3.24020
|
10.49915
|
2.26760
|
13.50975
|
0.035
|
uDmod1
|
0.04400
|
0.00190
|
0.03550
|
0.12090
|
0.025
|
uDmod2
|
0.05005
|
0.00255
|
0.04110
|
0.11065
|
0.025
|
uDreyfus1
|
0.00230
|
0.00000
|
0.00195
|
0.00730
|
0.010
|
uDreyfus2
|
0.09060
|
0.00820
|
0.07245
|
0.22000
|
0.020
|
uGauss1
|
2.31220
|
5.34635
|
1.81320
|
7.43790
|
0.095
|
uGauss2
|
2.37565
|
5.64385
|
1.86935
|
7.60370
|
0.075
|
uGauss3
|
2.77235
|
7.68820
|
2.18500
|
7.50600
|
0.070
|
uNeuroOne
|
0.28300
|
0.08010
|
0.23130
|
0.56750
|
0.010
|