Setup
Packages and options
library(NNbenchmark)
library(kableExtra)
options(scipen = 999)
Datasets to test
NNdataSummary(NNdatasets)
## Dataset n_rows n_inputs n_neurons n_parameters
## 1 mDette 500 3 5 26
## 2 mFriedman 500 5 5 36
## 3 mIshigami 500 3 10 51
## 4 mRef153 153 5 3 22
## 5 uDmod1 51 1 6 19
## 6 uDmod2 51 1 5 16
## 7 uDreyfus1 51 1 3 10
## 8 uDreyfus2 51 1 3 10
## 9 uGauss1 250 1 5 16
## 10 uGauss2 250 1 4 13
## 11 uGauss3 250 1 4 13
## 12 uNeuroOne 51 1 2 7
Launch package’s trainPredict
res <- trainPredict_1pkg(1:12, pkgname = "snnR", pkgfun = "snnR", snnR.method,
prepareZZ.arg = snnR.prepareZZ, nrep = nrep, doplot = TRUE,
csvfile = TRUE, rdafile = TRUE, odir = odir, echo = FALSE)
Results
#print(res)
kable(t(apply(res, c(1,4), min)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.8399
|
0.7054
|
0.6390
|
3.7672
|
0.03
|
mFriedman
|
0.0457
|
0.0021
|
0.0353
|
0.1770
|
0.11
|
mIshigami
|
0.6676
|
0.4456
|
0.4695
|
2.7236
|
0.19
|
mRef153
|
4.3529
|
18.9480
|
3.2423
|
15.2576
|
0.01
|
uDmod1
|
0.2927
|
0.0857
|
0.2512
|
0.6561
|
0.02
|
uDmod2
|
0.2585
|
0.0668
|
0.2264
|
0.5023
|
0.01
|
uDreyfus1
|
0.3691
|
0.1362
|
0.2756
|
0.8531
|
0.00
|
uDreyfus2
|
0.3837
|
0.1473
|
0.2773
|
1.0352
|
0.00
|
uGauss1
|
6.3315
|
40.0882
|
5.2512
|
16.1216
|
0.02
|
uGauss2
|
9.4678
|
89.6394
|
6.9147
|
30.1105
|
0.01
|
uGauss3
|
5.2818
|
27.8976
|
4.0957
|
15.6474
|
0.01
|
uNeuroOne
|
0.6793
|
0.4615
|
0.5564
|
1.6288
|
0.00
|
kable(t(apply(res, c(1,4), median)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
1.63810
|
2.8048
|
1.25380
|
9.24805
|
0.080
|
mFriedman
|
0.05945
|
0.0036
|
0.04775
|
0.20870
|
0.130
|
mIshigami
|
0.86210
|
0.7433
|
0.60300
|
3.63200
|
0.395
|
mRef153
|
4.35290
|
18.9480
|
3.24230
|
15.25765
|
0.030
|
uDmod1
|
0.35950
|
0.1293
|
0.31160
|
0.80470
|
0.030
|
uDmod2
|
0.25850
|
0.0668
|
0.22640
|
0.50230
|
0.025
|
uDreyfus1
|
0.36910
|
0.1362
|
0.27560
|
0.85310
|
0.000
|
uDreyfus2
|
0.38370
|
0.1473
|
0.27730
|
1.03520
|
0.010
|
uGauss1
|
11.61750
|
134.9658
|
9.57490
|
25.91460
|
0.030
|
uGauss2
|
9.51690
|
90.5717
|
7.00610
|
30.25900
|
0.030
|
uGauss3
|
5.28180
|
27.8977
|
4.09570
|
15.64745
|
0.025
|
uNeuroOne
|
0.67930
|
0.4615
|
0.55640
|
1.62880
|
0.000
|