Setup
Packages and options
library(NNbenchmark)
library(kableExtra)
options(scipen = 999)
Datasets to test
NNdataSummary(NNdatasets)
## Dataset n_rows n_inputs n_neurons n_parameters
## 1 mDette 500 3 5 26
## 2 mFriedman 500 5 5 36
## 3 mIshigami 500 3 10 51
## 4 mRef153 153 5 3 22
## 5 uDmod1 51 1 6 19
## 6 uDmod2 51 1 5 16
## 7 uDreyfus1 51 1 3 10
## 8 uDreyfus2 51 1 3 10
## 9 uGauss1 250 1 5 16
## 10 uGauss2 250 1 4 13
## 11 uGauss3 250 1 4 13
## 12 uNeuroOne 51 1 2 7
Launch package’s trainPredict
res <- trainPredict_1pkg(1:12, pkgname = "traineR", pkgfun = "train.nnet", traineR.method,
prepareZZ.arg = traineR.prepareZZ, nrep = nrep, doplot = TRUE,
csvfile = TRUE, rdafile = TRUE, odir = odir, echo = FALSE)
Results
#print(res)
kable(t(apply(res, c(1,4), min)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.2967
|
0.0880
|
0.2297
|
1.3034
|
0.06
|
mFriedman
|
0.0112
|
0.0001
|
0.0088
|
0.0371
|
0.07
|
mIshigami
|
0.5910
|
0.3493
|
0.4477
|
2.8272
|
0.12
|
mRef153
|
3.2252
|
10.4016
|
2.1861
|
12.3903
|
0.00
|
uDmod1
|
0.0436
|
0.0019
|
0.0352
|
0.1090
|
0.00
|
uDmod2
|
0.0427
|
0.0018
|
0.0330
|
0.1042
|
0.00
|
uDreyfus1
|
0.0022
|
0.0000
|
0.0015
|
0.0068
|
0.00
|
uDreyfus2
|
0.0906
|
0.0082
|
0.0724
|
0.2199
|
0.00
|
uGauss1
|
2.2350
|
4.9951
|
1.7379
|
6.9523
|
0.03
|
uGauss2
|
2.3663
|
5.5993
|
1.8601
|
7.4004
|
0.01
|
uGauss3
|
2.2994
|
5.2872
|
1.8319
|
6.4072
|
0.00
|
uNeuroOne
|
0.2830
|
0.0801
|
0.2313
|
0.5674
|
0.00
|
kable(t(apply(res, c(1,4), median)))%>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
|
RMSE
|
MSE
|
MAE
|
WAE
|
time
|
mDette
|
0.48980
|
0.24035
|
0.36425
|
2.32880
|
0.080
|
mFriedman
|
0.08065
|
0.00655
|
0.07325
|
0.15530
|
0.100
|
mIshigami
|
1.28565
|
1.95540
|
0.98775
|
4.31375
|
0.140
|
mRef153
|
3.52975
|
12.46025
|
2.57410
|
14.53150
|
0.015
|
uDmod1
|
0.07420
|
0.00575
|
0.05575
|
0.22025
|
0.005
|
uDmod2
|
0.05990
|
0.00360
|
0.04825
|
0.13250
|
0.000
|
uDreyfus1
|
0.00340
|
0.00000
|
0.00270
|
0.01045
|
0.000
|
uDreyfus2
|
0.09060
|
0.00820
|
0.07240
|
0.22015
|
0.000
|
uGauss1
|
2.58120
|
6.67275
|
2.03685
|
8.17910
|
0.030
|
uGauss2
|
2.58170
|
6.66535
|
2.06355
|
7.88280
|
0.025
|
uGauss3
|
3.48485
|
12.14445
|
2.77020
|
10.57610
|
0.025
|
uNeuroOne
|
0.28300
|
0.08010
|
0.23130
|
0.56750
|
0.000
|